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1 Introduction

An irreducible root system is a finite set of vectors in Euclidean space satisfying
certain properties. The goal of this essay is to classify all irreducible root sys-
tems. I mostly follow the books given in references, however some information
is from other sources, such as Wikipedia, PlanetMath, and MathWorld.

2 Root systems

Definition. Let E ∼= R
n be a vector space with an inner product 〈·, ·〉. A subset

R ⊂ E \ {0} is called root system, if R has the following properties:

(R1) R is finite and spans E,

(R2) if α ∈ R, then −α ∈ R and ±α are the only multiples of α in R,

(R3) R is invariant under the reflection in the hyperplane orthogonal to any
α ∈ R (see Fig. 1), i.e., for all α, β ∈ R:

sα(β) = β − 2 projα β ∈ R, (1)

where projα β is the projection of β on α:

projα β = α
〈β, α〉
〈α, α〉 , (2)

α

β

sα(β)

α 〈β,α〉
〈α,α〉 = projα β

Figure 1: The reflection sα(β) of β in the hyperplane orthogonal to α.

1



α

β0 (θ0 = π
2 )

β1 (θ1 = π
3 )

β2 (θ2 = π
4 )

β3 (θ3 = π
6 )

Figure 2: The possible directions for β, when α is fixed.

(R4) R is crystallographic, i.e., for all α, β ∈ R:

nβα = 2
〈β, α〉
〈α, α〉 ∈ Z. (3)

The elements of R are called roots and the dimension of E is called the rank of
the root system.

Definition. The root system R is called decomposable if there is a proper
decomposition R = R1 ∪ R2 such that ∀α1 ∈ R1,∀α2 ∈ R2 : 〈α1, α2〉 = 0.
Otherwise it is called indecomposable or irreducible.

The condition −α ∈ R in property (R2) is not needed, because it follows
from (R4), since sα(α) = −α. We can interpret the property (R4) geometrically
as follows – the projection of β on α is an integer or half-integer multiple of α,
since

projα β =
1

2
nβαα.

In fact, this is the most restrictive property, because

nβα = 2
〈β, α〉
〈α, α〉 = 2

‖β‖ ‖α‖ cos θ

‖α‖2 = 2
‖β‖
‖α‖ cos θ ∈ Z,

where θ is the angle between α and β. Since both nβα and nαβ are integers:

nβα · nαβ = 4 cos2 θ ∈ Z.

More precisely, 4 cos2 θ ∈ {0, 1, 2, 3, 4}. If 4 cos2 θ = 4, then θ ∈ {0, π}, which
is just the property (R2). The other cases are summarized in Table 1 and the
corresponding vectors are shown in Fig. 2.

Let us consider root systems of small rank and see what are the possible
configurations that we can get (the examples are taken from [1] and [2]).

2.1 Root systems of rank 1

If we choose any non-zero vector α ∈ R, then R = {α,−α} is a root system.
Since any other non-zero vector is a multiple of α, property (R2) forbids us to
add more vectors to our root system. Therefore in rank 1 there is only one
possible root system – it is called A1 (see Fig. 3).
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4 cos2 θ nβα nαβ ‖α‖ / ‖β‖ cos θ θ

3 +1 +3
√

3 +
√

3/2 π/6

−1 −3
√

3 −
√

3/2 5π/6

2 +1 +2
√

2 +
√

2/2 π/4

−1 −2
√

2 −
√

2/2 3π/4
1 +1 +1 1 +1/2 π/3

−1 −1 1 −1/2 2π/3
0 0 0 any 0 π/2

Table 1: Possible values of 4 cos2 θ and the corresponding angles θ. We assume
that α is longer than β.

Figure 3: The root system A1.

2.2 Root systems of rank 2

In rank 2 there is more freedom, because we can use any angle θ given in Table 1.
The simplest root system corresponds to θ = π/2. It is called A1 ×A1, because
it is a direct sum of two rank 1 root systems A1 (see Fig. 4). Therefore it is
decomposable and the ratio of lengths of vertical and horizontal roots can be
arbitrary.

When θ = π/3, the root system consists of 6 vectors that correspond to the
vertices of a regular hexagon. This root system is called A2 and it is shown in
Fig. 5 (the purpose of the dashed lines is to indicate the lengths of projections
as in [3, pp. 120]).

If θ = π/4, the root system consists of 8 vectors. They correspond to the
vertices and to the midpoints of the edges of a regular square (see Fig. 6). The
ratio of lengths of these roots is

√
2. This root system is called B2.

Finally, if θ = π/6, the root system consists of 12 vectors. They correspond
to the vertices of two regular hexagons that have different sizes and are rotated
away from each other by an angle π/6 (see Fig. 7). The ratio of lengths of these
vectors is

√
3. This is an “exceptional” root system and is called G2.

It is not hard to see, that there are no other root systems of rank 2, because
in two dimensions the angle θ determines the root system completely, i.e., once

Figure 4: The root system A1 ×A1. Figure 5: The root system A2.
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Figure 6: The root system B2. Figure 7: The root system G2.

Figure 8: The root system A3. Figure 9: The root system B3.

the angle is chosen, the ratio of lengths of two consecutive roots is determined
(except for the case θ = π/2), hence the root system itself.

2.3 Root systems of rank 3

In rank 3 there are more decomposable root systems than in rank 2, because we
can use any root system of a lower rank to build one with a higher rank. The
decomposable root systems are: A1 ×A2, A1 ×B2, A1 ×G2, and A1 ×A1 ×A1.
But there are also three irreducible root systems.

The smallest irreducible root system of rank 3 consists of 12 points and
is called A3 (see Fig. 8). These roots correspond to the vertices of a regular
cuboctahedron (the intersection of a cube and an octahedron). One can think of
cuboctahedron as a cube with corners cut off. Then the roots correspond to the
midpoints of the edges of the cube. It means, they have the same length.

We can extend this root system by adding six vectors that are
√

2 times
shorter and correspond to the midpoints of the quadrangular faces of the cuboc-
tahedron or simply to the faces of the cube (see Fig. 9). The obtained root
system has 18 vectors and is called B3.

It turns out that we can extend A3 in another way. We use the same six
vectors, but this time we take them to be

√
2 times longer than the ones already

in A3 (see Fig. 10). This gives us a different kind of root system that also
consists of 18 vectors and is called C3. It looks different, because the convex
hull of the roots is an octahedron. But one can still see the cuboctahedron
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Figure 10: The root system C3.

behind it (consider the dashed lines in Fig. 10, that join the midpoints of the
edges of the octahedron).

The root systems A3, B3, and C3 are the only irreducible root systems of
rank 3 (see [1, pp. 323] and [2, pp. 163, 262]). Since the root systems of rank 4
will not be easy to visualize, let us proceed to the classification of root systems
of any rank.

3 Classification of root systems

The proof of the classification theorem can be found in several textbooks, e.g.,
[1, pp. 325], [4, pp. 186], [5, pp. 130], [6, pp. 57], and [7, pp. 201]. I will follow
the proofs given in [5] and [6].

3.1 Simple roots

For each root system one can choose a special subset (though it is not unique)
of roots called simple roots or fundamental system. It plays a very important
role in the classification of irreducible root systems.

Consider a root system R. For each root there is a unique hyperplane that
contains the origin and is orthogonal to this root. Since a root system is finite,
the union of all such hyperplanes can not be the whole space. Thus one can find
a vector d, such that ∀α ∈ R : 〈α, d〉 6= 0. Then we can break the root system
into two disjoint parts R = R+(d) ∪R−(d), where R+(d) = {α ∈ R| 〈α, d〉 > 0}
and R−(d) = −R+(d).

Definition. A root α is called positive if α ∈ R+(d) and negative if α ∈ R−(d).

Definition. A positive root α ∈ R+(d) is called simple if it is not a sum of two
other positive roots.

Definition. The set of all simple roots of a root system R is called basis or
fundamental system of R.
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One might think that different choices of d can lead to differently looking
bases, but it turns out that this is not the case. For each root α ∈ R there is a
hyperplane orthogonal to α and the union of all these hyperplanes cut the space
E into open, connected regions called Weyl chambers. It turns out that there is
a one-to-one correspondence between bases and Weyl chambers:

• given a basis ∆ ⊂ R the corresponding Weyl chamber C consists of all
vectors in E having positive inner product with all simple roots from ∆,

• given a Weyl chamber C those α ∈ R that have positive inner product
with all vectors from C are positive roots R+ and they determine the set
of simple roots ∆.

Definition. The group generated by reflections sα is called Weyl group.

Lemma 1. Any two bases of a given root system R ⊂ E are equivalent under
the action of the Weyl group.

Moreover, it turns out that the basis of a root system contains all information
about it, i.e., knowing simple roots is enough to recover the whole root system.

Lemma 2. The root system R can be uniquely reconstructed from its basis.

This reconstruction is done by repeatedly applying reflections (1) in the
hyperplanes orthogonal to the simple roots.

3.2 Properties of simple roots

Lemma 3. If α, β ∈ R are not proportional and 〈α, β〉 > 0, then α − β ∈ R.

Proof. Since nαβ = 2 〈α, β〉 / 〈β, β〉 > 0, from Table 1 we see that either nαβ or
nβα is 1. If nαβ = 1, then sβ(α) = α−2β 〈α, β〉 / 〈β, β〉 = α−β·nαβ = α−β ∈ R.
If nβα = 1, then sα(−β) = −β − α · n(−β)α = −β + α · nβα = α − β ∈ R.

Lemma 4. If α and β are distinct simple roots, then 〈α, β〉 ≤ 0.

Proof. Assume the opposite, i.e., 〈α, β〉 > 0. Then from the previous lemma we
have α − β = γ ∈ R. If γ ∈ R+(d), then α = β + γ ∈ R+(d), which contradicts
that α is simple. Otherwise −γ ∈ R+(d) and β = α + (−γ) ∈ R+(d), which
contradicts that β is simple.

We will need two more properties of simple roots:

Lemma 5. The simple roots are linearly independent and span the whole space.

Lemma 6. The root system is decomposable if and only if its base is decompos-
able.
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3.3 The classification theorem

According to Lemma 4 two simple roots α and β are either orthogonal or the
angle θ between them is obtuse. From Table 1 we see that θ is either π/2, 2π/3,
3π/4 or 5π/6. We can encode this information into a graph:

Definition. The Coxeter graph of a root system R is a graph that has one
vertex for each simple root of R and every pair α, β of distinct vertices is
connected by nαβ · nβα = 4 cos2 θ ∈ {0, 1, 2, 3} edges (hence it is a multigraph).

However, there is some information missing, namely the relative lengths of
the roots. If the angle between two roots is either 5π/6 or 3π/4, then we have
to specify which root is longer. If the angle is 2π/3, then both roots have the
same length, so we do not need to add anything. Finally, since we are interested
only in irreducible root systems, the lengths of roots with the angle π/2 must be
correlated (only if the root system is decomposable into two mutually orthogonal
sets, we can rescale the roots in one of them by an arbitrary factor, without
affecting the roots in other sets), therefore in this case we are also done. Hence
we can encode all the information as follows:

Definition. The Dynkin diagram of a root system is its Coxeter graph with
arrows attached to the double and triple edges that point to the shorter root.

In fact, to classify the irreducible root systems, it is enough to consider only
the Coxeter graphs. Once all possible Coxeter graphs are known, we can add
arrows to obtain the corresponding Dynkin diagrams. Therefore we will forget
about the lengths of the roots for now.

Definition. A linearly independent set of n unit vectors {v1, v2, . . . , vn} that
spans E is called an admissible configuration if for all i 6= j : 〈vi, vj〉 ≤ 0 and

4 〈vi, vj〉2 = 4 cos2 θ ∈ {0, 1, 2, 3}.

Note the set of normalized simple roots of any root system is an admissible
configuration, since according to Lemma 5 they are linearly independent and
span the whole space.

Definition. Coxeter graph of an admissible configuration is admissible diagram.

According to Lemma 6 the set of simple roots of an irreducible root system
can not be decomposed into mutually orthogonal subsets. It means that the
corresponding Coxeter graph will be connected. Thus, to classify all irreducible
root systems, we will consider only connected admissible diagrams. Now we are
ready to prove the classification theorem.

Theorem. The Dynkin diagram of an irreducible root system is one of the
diagrams shown in Fig. 11.

Proof. Let us classify the connected admissible diagrams first and then proceed
to the Dynkin diagrams. The classification consists of several steps:

1. Any subdiagram of an admissible diagram is also admissible. If the set
{v1, v2, . . . , vn} is an admissible configuration, then clearly any subset of
it is also an admissible configuration (in the space it spans). The same
holds for admissible diagrams.
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An

(n ≥ 1)

Bn

(n ≥ 2)

Cn

(n ≥ 3)

Dn

(n ≥ 4)

E6

E7

E8

F4 G2

Figure 11: Four infinite families and five exceptional root systems.

2. A connected admissible diagram is a tree. Define v =
∑n

i=1 vi. It is clear
that v 6= 0, since the vectors v1, v2, . . . , vn are linearly independent. Then

0 < 〈v, v〉 =
n

∑

i=1

〈vi, vi〉 +
∑

i<j

2 〈vi, vj〉 = n +
∑

i<j

2 〈vi, vj〉 .

If the vertices vi and vj are connected, then 2 〈vi, vj〉 ∈
{

−1,−
√

2,−
√

3
}

.
In particular, 2 〈vi, vj〉 ≤ −1. It means, the number of terms in the sum
can not exceed n−1, thus the number of distinct pairs of connected vertices
is also at most n − 1. Since the diagram is connected, there must be at
least n − 1 such pairs. Therefore the number of distinct connected pairs
of vertices is exactly n − 1 and the diagram is a tree.

3. No more than three edges (counting multiplicities) can originate from the
same vertex. Let c be any vertex and v1, v2, . . . , vk be all vertices that are
connected to c. Since the graph has no cycles, there are no edges between
any vi and vj . Thus 〈vi, vj〉 = 0 when i 6= j and {v1, v2, . . . , vk} is an
orthonormal set. Since the simple roots are linearly independent, c can
not be expressed as a linear combination of vi’s. Hence c has a non-zero
projection to the orthogonal complement of span {v1, v2, . . . , vk}. Let us
normalize this projection and denote it by v0. Then {v0, v1, v2, . . . , vk} is
an orthonormal set and we can express c as follows:

c =

k
∑

i=0

〈c, vi〉 vi.

Since c is a unit vector, 〈c, c〉 =
∑k

i=0 〈c, vi〉2 = 1. But 〈c, v0〉 6= 0, thus

k
∑

i=1

4 〈c, vi〉2 < 4. (4)
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Figure 12: Collapsing simple chains to obtain forbidden subdiagrams.

The quantity 4 〈c, vi〉2 is the number of edges between c and vi, thus from
(4) it follows that the number of edges originating at c is less than 4.

4. The only connected admissible diagram containing a triple edge is G2 that
is shown in Fig. 11. This follows from the previous step. From now on
we will consider only diagrams with single and double edges.

5. Any simple chain v1, v2, . . . , vk in a connected admissible diagram can be
replaced by a single vector v =

∑k

i=1 vi.

Definition. A simple chain is a non-repeating sequence of vertices such
that every two consecutive vertices are connected with a single edge.

We must show that v is a unit vector and the obtained diagram is admis-
sible and connected. We have:

〈v, v〉 = k +
∑

i<j

2 〈vi, vj〉 .

There are no cycles, thus 〈vi, vj〉 = 0 for all pairs i < j, except j = i + 1.
For two consecutive vertices in the chain we have 2 〈vi, vi+1〉 = −1, thus

∑

i<j

2 〈vi, vj〉 =

k−1
∑

i=1

2 〈vi, vi+1〉 = −(k − 1)

and 〈v, v〉 = k − (k − 1) = 1, hence v is a unit vector.

Since there are no cycles, an arbitrary vertex u that is not in the chain,
can be connected to at most one vertex (let it be vj) in the chain. Then

〈u, v〉 =

k
∑

i=1

〈u, vi〉 = 〈u, vj〉 .

It means, the whole chain is replaced by a single vertex v and any vertex u
not in the chain remains connected to v in the same way it was connected
to vj . Therefore the obtained diagram is also admissible and connected.
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cu1

u1

v1

v1

w1

u2

u2

v2

v2

w2

up−1

vq−1

wr−1

up vq

T1

T2

T3

Figure 13: Three possible types of connected admissible diagrams.

6. A connected admissible diagram has none of subdiagrams shown in Fig. 12.
In each case the subdiagram contains a simple chain. According to Step 5
it can be collapsed to a single vertex. But according to Step 3 the obtained
subdiagram is not valid, since it has a vertex of degree four. This is a
contradiction with Step 1.

7. It means that a connected admissible diagram can contain at most one
double edge and at most one branching, but not both of them simulta-
neously. If we neglect the diagram G2 with a triple edge, we can make
the following conclusion. There are only three possible types of connected
admissible diagrams (see Fig. 13):

T1: a simple chain,

T2: a diagram with a double edge,

T3: a diagram with branching.

8. The admissible diagram of type T1 corresponds to the Dynkin diagram An

in Fig. 11, where n ≥ 1.

9. The only admissible diagrams of type T2 are Bn = Cn, and F4. Define
u =

∑p

i=1 i · ui. Since 2 〈ui, ui+1〉 = −1 for 1 ≤ i ≤ p − 1, we get

〈u, u〉 =

p
∑

i=1

i2 〈ui, ui〉 +
∑

i<j

ij · 2 〈ui, uj〉

=

p
∑

i=1

i2 +

p−1
∑

i=1

i(i + 1) · 2 〈ui, ui+1〉

=

p
∑

i=1

i2 −
p−1
∑

i=1

i(i + 1) = p2 −
p−1
∑

i=1

i

= p2 − p(p − 1)

2
=

p(p + 1)

2
.

(5)

In a similar way we define v =
∑q

j=1 j · vj and get 〈v, v〉 = q(q + 1)/2.
Finally, 〈u, v〉 = pq 〈up, vq〉, because the double edge is the only edge
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p q r Dynkin diagram

any 2 2 Dn

3 3 2 E6

4 3 2 E7

5 3 2 E8

Table 2: Possible integer solutions of inequality (8) and the corresponding
Dynkin diagrams of type T3.

between ui’s and vj ’s. Thus 4 〈up, vq〉2 = 2 and we get 〈u, v〉2 = p2q2/2.
Since u is not a multiple of v, Cauchy-Schwarz inequality holds strictly:
〈u, v〉2 < 〈u, u〉 〈v, v〉. Therefore

p2q2

2
<

p(p + 1)

2
· q(q + 1)

2
.

Since p and q are positive integers, we get 2pq < (p + 1)(q + 1) or equiva-
lently (p− 1)(q − 1) < 2. The only solutions are p = q = 2 or p = 1 and q
is arbitrary (or vice versa).

The first solution corresponds to the Dynkin diagram F4 in Fig. 11. The
second solution corresponds either to the Dynkin diagram Bn or to Cn

(we have to choose the direction of the arrow on the double edge). If
n = 1, both diagrams coincide with A1, but if n = 2, we have B2 = C2.
Therefore we can use a convention that Bn has n ≥ 2, but Cn has n ≥ 3.

10. The only admissible diagrams of type T3 are Dn, E6, E7, and E8. As
before, define u =

∑p−1
i=1 i ·ui, v =

∑q−1
j=1 j ·vj , and w =

∑r−1
k=1 k ·wk. Since

there are no direct edges between ui’s, vj ’s, and wk’s, they are in mutually
orthogonal subspaces. The same holds for u, v, and w. Using a similar
argument as in Step 3 we conclude that c is not a linear combination of
u, v, and w, therefore

1 = 〈c, c〉 > 〈c, u′〉2 + 〈c, v′〉2 + 〈c, w′〉2 , (6)

where u′ = u/
√

〈u, u〉, v′ = v/
√

〈v, v〉, and w′ = w/
√

〈w,w〉 are the unit
vectors in directions u, v, and w. Thus

〈c, u′〉2 =
〈c, u〉2
〈u, u〉 . (7)

None of ui is connected to c, except up−1, thus 〈c, ui〉2 = 0 unless i = p−1.

For up−1 we have 4 〈c, up−1〉2 = 1, because c and up−1 are connected with
a single edge. Therefore the numerator of (7) is

〈c, u〉2 =

p−1
∑

i=1

i2 〈c, ui〉2 = (p − 1)2 〈c, up−1〉2 =
(p − 1)2

4
.

According to (5), the denominator of (7) is p(p − 1)/2, thus (7) becomes

〈c, u′〉2 =
(p − 1)2

4
· 2

p(p − 1)
=

p − 1

2p
=

1

2

(

1 − 1

p

)

,
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where p − 1 was canceled out, since p ≥ 2. If we do the same for v′ and
w′, equation (6) becomes 2 > (1 − 1/p) + (1 − 1/q) + (1 − 1/r) or simply

1

p
+

1

q
+

1

r
> 1, p, q, r ≥ 2. (8)

We can assume that p ≥ q ≥ r ≥ 2. There is no solution with r ≥ 3,
since then the left hand side of (8) can not exceed 1. Therefore we have
to take r = 2. If we take q = 2 as well, then any p suits, but for q = 3 we
have 1/q + 1/r = 5/6 and we can take only p < 6. There are no solutions
with q ≥ 4, because then the left hand sinde of (8) is at most 1. The
corresponding type T3 Dynkin diagrams are summarized in Table 2.

This completes the classification theorem.

We have shown that for any root system the corresponding Dynkin diagram
is one of the diagrams in Fig. 11, but it does not mean that for each diagram
there indeed is a corresponding root system. However, for each diagram shown
in Fig. 11 there indeed is a root system whose diagram it is. The construction of
all root systems can be found in several textbooks, e.g., [1, pp. 330], [5, pp. 135],
[6, pp. 63], and [8, pp. 293]. Therefore

Theorem. For each Dynkin diagram shown in Fig. 11 there is an irreducible
root system having the given diagram.
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